
Embedded Software Testing in a
Power Electronics Context

Janne Paalijärvi

School of Science

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 2017-11-27

Supervisor

Prof. Stavros Tripakis

Advisor

M.Sc. Pasi Lauronen

This thesis is hereby released with the Creative Commons Attribution 4.0 Interna-
tional license as of 2019 by the author Janne Paalijärvi with the following exceptions:

This thesis may never be published in collections, journals, or other platforms
limiting access to the publication. In case the access policy of the publication plat-
form changes from open to limited, this thesis must be immediately excluded from
the publication platform.

Aalto University, PO BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the master’s thesis

Author Janne Paalijärvi

Title Embedded Software Testing in a Power Electronics Context

Degree program Master’s Programme in Computer, Communication and
Information Sciences

Major Computer Science Code of major SCI3042

Supervisor Prof. Stavros Tripakis

Advisor M.Sc. Pasi Lauronen

Date 2017-11-27 Number of pages 68+2 Language English

Abstract
Usage of microcontrollers and embedded software is a continually rising trend.
The use of established processor technologies in the power electronics industry
combined with the customer- and vendor-based analysis demands create a need
for running more embedded software on products. At the same time, the code
complexity warrants better testing and verification of software.

This thesis researches a solution to enable embedded software testing in a
power electronics context. Regular microcontroller-based solutions are emphasized.
Care is taken to consider the reuse and automatization of testing, as well as to
facilitate the early development of an electronics product.

Keywords Embedded software, power electronics, testing, verification

Aalto-yliopisto, PL 11000, 00076 AALTO
www.aalto.fi

Diplomityön tiivistelmä

Tekijä Janne Paalijärvi

Työn nimi Sulautettujen ohjelmistojen testaus tehoelektroniikkaympäristössä

Koulutusohjelma Master’s Programme in Computer, Communication and
Information Sciences

Pääaine Computer Science Pääaineen koodi SCI3042

Työn valvoja Prof. Stavros Tripakis

Työn ohjaaja DI Pasi Lauronen

Päivämäärä 2017-11-27 Sivumäärä 68+2 Kieli Englanti

Tiivistelmä
Sulautettua ohjelmakoodia ajavien mikrokontrollerien suosio kasvaa jatkuvasti.
Vakiintuneiden prosessoriteknologioiden käyttö vastaamaan asiakkaiden ja
valmistajien vaatimuksiin mm. data-analyysissä merkitsee sulautetun koodin
määrän kasvamista tuotteissa tulevaisuudessa. Tuotteita tulee myös enemmän
ja ne ovat entistä kompleksisempia. Vaatimukset tuotteiden koodin parempaan
laadunvarmistukseen ja testaukseen kasvavat myös.

Tässä diplomityössä tutkitaan ratkaisuja sulautetun ohjelmakoodin tes-
taukseen mikrokontrolleripohjaisissa tehoelektroniikkaympäristöissä. Työssä on
kiinnitetty huomiota testauksen uudelleenkäyttömahdollisuuksiin ja testauksen
automatisointiin sekä elektroniikkatuotteiden varhaiskehitykseen.

Avainsanat Sulautetut ohjelmistot, tehoelektroniikka, testaus, ohjelmistotestaus,
laadunvarmistus

5

Preface
I would like to thank my family and friends for their continued support and trust
vested in me throught the thesis work. I would also like to specifically thank Lauri
Kääriäinen for his continued support of my academic research. My thanks go to
Lasse Kärkkäinen for teaching me the fundamentals of efficient software development
and how to unlock the full potential of the human mind. I would like to finally thank
Sampo Syreeni for his brutally honest and accurate criticism of the earlier versions
of the thesis. Sampo’s comments helped me the most in finalizing the thesis.

Mexico City, November 25, 2017

Janne Paalijärvi

6

Contents
Abstract 3

Abstract (in Finnish) 4

Preface 5

Contents 6

Abbreviations and Acronyms 8

Units 10

1 Introduction 11
1.1 Objective of the Thesis . 11
1.2 Overview of the Thesis . 11

2 Power Electronics and Embedded Software 13
2.1 Power Electronics . 13

2.1.1 Control and Regulation . 13
2.1.2 Efficiency . 15
2.1.3 Linear versus Switching Mode 15
2.1.4 Power Electronics Device Types 15

2.2 Embedded Software . 16
2.2.1 Microcontrollers . 16
2.2.2 DSPs and FPGAs . 17
2.2.3 Development Tools . 18
2.2.4 Programming Embedded Software 19

2.3 Embedded Software in Power Electronics 26
2.3.1 Benefits . 26
2.3.2 Future . 27

3 Embedded Software Testing 29
3.1 Benefits of Testing in Industrial Power Electronics 29
3.2 What to Consider when Testing in the Power Electronics Context . . 30
3.3 Testing and Verification Methods . 31

3.3.1 Checklists . 31
3.3.2 Code Reviews . 31
3.3.3 Test-driven Development . 31
3.3.4 Simulation . 32
3.3.5 Unit Testing . 33
3.3.6 Regression Testing . 33
3.3.7 Static Code Analysis . 33
3.3.8 Dynamic Code Analysis . 33
3.3.9 Hardware-in-the-Loop . 34
3.3.10 Black Box Testing . 34

7

3.3.11 White Box Testing . 35
3.3.12 Fuzzing . 35
3.3.13 Continuous Integration . 35

4 Our Approach 36
4.1 Requirements . 36
4.2 High Level Architecture . 36
4.3 Individual Components . 37

4.3.1 Test Controller . 37
4.3.2 Firmware Flasher . 38
4.3.3 Probe Microcontroller . 38
4.3.4 Continuous Integration Service 38

5 Implementation 39
5.1 Hardware Implementation . 39
5.2 Software Implementation . 41

5.2.1 Overview of Design Decisions and High-Level Architecture . . 41
5.2.2 UART-Based Communication Protocol 43
5.2.3 Device List . 45
5.2.4 Test Commands and Test Sequencer 47
5.2.5 PWM Signal Capture and Generation 48
5.2.6 DUT Input Power Relay . 49

6 Challenges 50
6.1 Error-Prone Pin Configuration . 50
6.2 Limited Number of DAC Devices . 51
6.3 Missing PWM Capture Pins . 51
6.4 Misbehaving Signal Generator . 52
6.5 Unstable PWM Sample Counter during UART Communication . . . 55

7 Case Study: Sequential Functional Block Activation 57

8 Conclusions and Future Work 64
8.1 Conclusions . 64
8.2 Enhancements and Future Work . 64

References 66

A PWM Capture of a 200 kHz Signal 69

8

Abbreviations and Acronyms

AC Alternating current; an electrical current which alternates
its direction periodically

AD Analog-to-digital; the conversion of a signal from analog
form to digital form

ADC Analog-to-digital converter; a microprocessor peripheral
device that converts an analog signal to digital format for
the processor

ARM Advanced RISC Machine; a processor family
ASIC Application-specific integrated circuit; a method of imple-

menting the application directly on silicon
C A popular low-level program language
CI Continuous integration; a method of development and test-

ing for automatic integration of individual works to the
common codebase

CRM Customer relationship management; software and practices
of managing relationships and business cases with customers

DAC Digital-to-analog converter; a microprocessor peripheral
device which converts a digital signal from the processor to
voltage signal needed outside the microprocessor

DC Direct current; an electrical current with non-alternating
direction

DSP Digital signal processor; a microprocessor with added accel-
erators for some dedicated functionalities

DUT Device under test; shorthand for the device or product
currently undergoing tests

ERP Enterprise resource planning; a business suite of software
for managing company resources and actions

FIFO First in, first out; a method for processing data in a way
that the first segment is processed and delivered first

FPGA Field-programmable gate array; an integrated circuit with
the ability to do logic-gate level programming after manu-
facturing

FPU Floating-point unit: a dedicated block inside a processor to
effectively operate with floating-point numbers in calcula-
tions

GPIO General-purpose input/output; a digital microcontroller pin
that can be configured to operate as input or output

HIL Hardware-in-the-Loop; a methodology in embedded systems
development where hardware-based control is run in an
environment which is simulated to some degree

HTTP Hypertext transfer protocol; a protocol to transfer and
display information for web browsers

9

I2C Inter-Integrated Circuit; a communications protocol for
embedded system bus

IDE Integrated development environment; an assisted system
for writing programming code for applications

JTAG A debugging interface for microcontrollers developed by the
Joint Test Action Group

LED Light-emitting diode; a semiconductor light source compo-
nent

MAC Multiplier–accumulator; a block on processor conducting
fast multiply–accumulate operations

MCR Match Control Register; a register that controls timer be-
havior in when a match event occurs

MCU Micro-controller unit; a small computer on a single chip,
including at least one processor, memory, and different kinds
of peripherals

MISRA Motor Industry Software Reliability Association; an organi-
zation that promotes best practices and safety in software
development for cars

MR0 Match Register 0; a register holding a value that is the
comparison point in timer operations in an MCU

PCB Printed circuit board; in electronic products the board hous-
ing processor(s), components and interconnecting electrical
pathways

PHP Recursively PHP: Hypertext Preprocessor; a scripting lan-
guage initially intended for server-side Web programming

PID Proportional-integral-derivative; a generic controller type
PMBus Power Management Bus; a SMBus-based communication

bus for power electronic devices management and measure-
ment

PNP A bipolar junction transistor variant with a segment of N-
type semiconductor between P-type semiconductor segments

PWM Pulse-width modulator; a popular way to control actuators
and other devices wired externally to microcontroller legs

RAM Random-access memory; a memory type in computing
REST Representational state transfer; an architecture model for

web services
RJ45 A telecommunications cable jack
SNMP Simple network management protocol; a protocol for col-

lecting information from managed devices on IP networks
SPI Serial Peripheral Interface bus; a synchronous serial com-

munication bus device
TAP Test Access Port; a functionality implemented in microcon-

trollers to allow debugging and testing the software on the
target

10

UART Universal Asynchronous Receiver/Transmitter; a device
used for serial communication in an asynchronous manner

UI User interface
USART Universal Synchronous/Asynchronous Receiver/Transmit-

ter; a device used for serial communication with the ability
for mode selection between synchronous and asynchronous

USB Universal Serial Bus; a standard for cables, communication
and protocols for USB devices

WebUI Web user interface; a user interface operable with a web
browser

Units

s second
ms millisecond; 0.001 x second
us microsecond; 0.000001 x second
Hz hertz
kHz kilohertz; 1000 x hertz
V Volt
mV millivolt; 0.001 x Volt

1 Introduction
This thesis researches solutions for the testing and verification of embedded systems
software. Specifically, the researched solutions apply to power electronics products.

In commercial projects in the aforementioned industries, it is usually desirable to
develop a feasible product while meeting an agreed upon deadline. The combination
of embedded software and power electronics has some unique constraints regarding
application development. Some of these constraints are not visible in normal ap-
plication software development for example in established PC-style computers and
operating systems or smartphones. With power electronics projects the actual final
hardware prototype may not be initially available. Instead, the hardware is often
available only at a reduced maturity level in the early stages of the project. Usually,
the hardware is first completely non-existent and then reaches its final form and
functionality at the very end of the actual product development cycle [6].

It is possible to gain momentum in software development for embedded systems
development even before having access to the complete working hardware. The
development process can usually be bootstrapped by using a subset of the final hard-
ware. Typically the software developer can use the product-specific microcontroller(s)
mounted to a debug board. This prototyping board is then connected with signal
generators, switches, oscilloscopes and other instruments to emulate the environment
of the final and complete electronics product. Figure 1 shows a typical setup for
early-stage software development for embedded systems.

Generally, it is favorable to find bugs and defects early in a software project, as
every new chronological step makes it more costly to fix the issues compared to the
previous step. It should be noted, however, that the estimations of defect costs have
varied depending on the source and the time in software engineering history [2]1.
Zhivich et al. [36] have argued that it is actually quite hard to evaluate the costs of
discovering and fixing bugs in the operation/end user phase because a single error in
an unfortunate place can have catastrophic fiscal consequences.

1.1 Objective of the Thesis
The objective of the thesis is to create a solution for facilitating embedded software
testing and development. The emphasis is put on the testing and verification of
regular microcontroller products in a power electronics context, but the methodologies
can also be used outside of this scope. The presented solution is aimed at cutting
down on the overall costs associated with the development and verification of the
power electronics products running embedded software.

1.2 Overview of the Thesis
Section 2 of this thesis describes what power electronics and embedded software are.
The use of embedded software in power electronics is also critically scrutinized and
the future of the industry is assessed.

1Criticism has also been presented about the cost per defect as a metric [11].

12

Figure 1: Embedded systems development setup for the early stages of a project.
Prototyping board has been populated with the chosen microcontroller, and a
plethora of output and input signals have been wired. These wires are connected to
the oscilloscope, switches, power supplies, etc.

Section 3 addresses embedded software testing. Goals, constraints, and processes
of the discipline are presented and analyzed. The testing methods are showcased
and investigated.

In Section 4, a conceptual solution for testing embedded software in a power
electronics context is presented. The solution takes into account the constraints
introduced in Section 3 and emphasizes on reusability, configurability, and traceability
in testing.

Section 5 shows how the system was implemented. The hardware and software
implementation are discussed. Notable features and properties of the system are
showcased.

The challenges faced during the implementation phase of the project are listed in
Section 6.

An actual embedded systems power electronics prototype was tested as a case
study. The results are listed in Section 7.

Section 8 concludes the thesis. This section evaluates the outcomes related to the
goals set in Section 4. Enhancements for further development are also presented.

13

2 Power Electronics and Embedded Software
This section describes what power electronics and embedded software are and how
they can be utilized in combination when creating new products and applications.
Benefits and criticism of this cooperation are also discussed. Finally, predictions for
the future for power electronics with embedded software is given.

2.1 Power Electronics
Power electronics are defined on a high level as devices that control electric energy
flow in a way that makes it the most suitable for user loads [19]. The type of energy
source for this electric conversion varies. Basically, the source can be of two different
types of current, namely alternating current (AC) or direct current (DC). Alternating
current typically has either one or three phases. The specific source of energy can
also vary. It can originate for example from power distribution networks (domestic
or industrial), local generator, batteries, solar panels or fuel cells [4]. Figure 2 shows
a typical theoretical block diagram for a power electronics device on the left and a
corresponding physical product on the right.

Figure 2: On the left is a theoretical block diagram of a power electronics device. On
the right, there is a cutaway model of a physical power converter, with corresponding
color highlights for input, output, power processing circuitry, microcontroller housing
and controller chip (picture adapted from Erickson et al. [8]).

2.1.1 Control and Regulation

Regulation is an essential part of working power electronics devices [8]. Regulation
typically means controlling the output characteristics of the power conversion ac-
cording to the output needs2. These needs are dictated by the properties of the

2A definition for purely voltage-based regulation also exists. The definition presented here is
more generic and applicable to all power conversion products.

14

equipment connected to the device output. The characteristics can be, for example,
voltage, current, and phase-angle relationships [19]. For regulation and efficiency
purposes, a dedicated controller chip is usually needed for power conversion products.
For simplicity, we will examine next an elementary voltage controller (even though
the same principles can be applied to other characteristics of power conversion).

The mode of operation for an elementary voltage controller is quite simple. In
the controller, there is a reference voltage measurement, which is from a stable
source. This stability is presumed over time and different operating conditions.
For purely analog designs, the reference can be from a dedicated reference voltage
circuit. For digital-based designs, this reference is a predetermined or adjusted
analog-to-digital (AD) reading originating from microcontroller memory and fed
to the dedicated controller chip. In both of these implementations, the controller
continuously measures the voltage of the power processing circuitry output and
compares it to the reference point. If the measurement is lower than the reference,
the controller increases the voltage at the device output. If the measurement is
higher than the reference, the output voltage is decreased [19]. If the reference and
measurements match, no action is taken. It should be noted that the controller does
not directly increase or decrease the voltage. Instead, it passes the new control signal
to actual power processing circuitry of the device, which in turn changes the voltage.
Conceptual picture of a simple controller can be seen in Figure 3.

Figure 3: Simple controller for a power converter. It should be noted that controller
outputs control value and does not solely alter the actual power conversion. Instead,
power conversion circuitry uses the control value to make adjustments.

15

2.1.2 Efficiency

In power electronics it is usually favorable to have as much of the input power
converted to output power as possible due to energy cost reasons. A property
called “efficiency” and denoted by η is used to define the amount of conversion.
In mathematical context, efficiency ranges from 0.00 to 1.00. An ideal converter
transforms 100% of its input power to output power. In actuality, a 100% conversion
rate is never achieved. The power not successfully converted to output is lost as heat.
If the amount of heat is substantially high, a dedicated system for heat transfer must
be incorporated in order to prevent the overheating of the converter. Putting it all
together, maximizing the conversion efficiency benefits the product in 2 ways: 1. it
reduces the cost of input energy by eliminating the waste energy, and 2. it reduces
product costs due to the unnecessity of dedicated heat transfer infrastructure [19].

2.1.3 Linear versus Switching Mode

For power processing devices, in general, there are two prominent modes of operation
available. These modes are linear and switching mode. Linear mode devices adjust
the output voltage by using a transistor with a constant control signal. The
total available voltage is split among transistor and device voltage. Essentially the
transistor acts as an adjustable resistor, as the component conductivity state is
defined by the control value from the dedicated controller [19].

For switched mode power processing devices the conversion happens essentially
by switching the internal power processing circuitry on and off. More precisely,
the controller gets feedback value from device output and based on a comparison
with a reference, the control signal is set on or off. This control signal is fed to the
power processing circuitry. A challenge of this approach is that the converted voltage
waveform is essentially a square wave. Capacitive and inductive filtering is used to
smooth the resulting waveform.

Linear mode and switched mode power processing technologies have different
characteristics and application areas. As stated in the previous section, heat is one
issue to be taken into account when constructing a power processing device. It has
been established [25] that usage of switching mode technology yields much higher
efficiency (and thus less waste energy as heat) than using linear mode. The downsides
of the switching mode are increased design complexity and fluctuations in output
voltage. Linear mode, on the other hand, offers fewer fluctuations and decreased
complexity with the cost of increased amount waste energy and increased size of the
device.

2.1.4 Power Electronics Device Types

Depending on the type of input and output voltages of power electronics devices, the
device has a dedicated type. The types are described in the following as (partially)
per [8]:

• AC-to-AC: Frequency converter, cycloconverter

16

• AC-to-DC: Rectifier

• DC-to-AC: Inverter

• DC-to-DC: Converter3

2.2 Embedded Software
Embedded software has no definition that all researchers completely agree on [29].
One popular view, however, seems to be that embedded software is run on resource-
constrained devices and applications that directly interact with the real world [15].
Some authors talk about cyber-physical systems [16]. Some examples of devices
running embedded software are dishwashers, refrigerators and printers. Embedded
software can also be used to operate car braking systems, factory robots and keycard-
based access control systems, just to name a few. A modern mobile phone can be
considered as a collection of devices that run embedded software and interact with
the physical world.

2.2.1 Microcontrollers

Embedded software naturally needs a device to run the program code. One type of
these devices is called microcontrollers, or MCUs. These microcontrollers typically
house an actual processing core, special memory for storing the program code and
RAM memory for application purposes. Some microcontrollers also house non-volatile
memory for application purposes or utilized memory chips connected externally.

Microcontrollers also usually incorporate peripheral devices. A peripheral device
is a device that implements a defined functionality inside the microprocessor. The
device may be accessible through the pins of the microprocessor in question and/or
via processor internal hardware registers. Common peripheral devices found in
microcontrollers are analog-to-digital converters (ADCs), digital-to-analog converters
(DACs), communication transceivers (for example U(S)ART4 or I2C5), timers, pulse-
width modulators (PWMs), and general purpose input/output (GPIO) pins [35].
Figure 4 displays the typical microcontroller from Texas Instruments, whereas in
Figure 5 there is a schematic diagram of the same microcontroller pin description
and orientation. This diagram is taken from the manufacturer-supplied datasheet,
which also lists the peripheral devices available for this specific microcontroller.

3Converter is also a generic name for a power conversion device.
4Universal (Synchronous/)Asynchronous Receiver/Transmitter.
5Inter-Integrated Circuit.

17

Figure 4: Picture of Texas Instruments MSP430-family microcontroller. (Copyright:
Digi-Key Corporation)

Figure 5: A diagram showing Texas Instruments MSP430-family microcontroller pin
descriptions and orientation. (Copyright: Texas Instruments Inc.)

2.2.2 DSPs and FPGAs

There also exist also other kinds of devices for running embedded software than
microcontrollers. One of those devices is called a digital signal processor (DSP).
DSP is essentially a regular MCU, but with added functionality for accelerating
some tasks, combined with instruction set supporting these accelerations [22]. One
common accelerated feature is multiply-accumulate (or MAC) that is used extensively
in matrix operations and filters [33]. DSP designs make it possible to carry out

18

these operations in only a few clock cycles. DSPs can be considered accurate and
sophisticated, low-latency FIFO6 devices. As new, top-level MCUs including DSP
capabilities are entering the market, the distinction between DSPs and MCUs as
processors is getting vague.

The field-programmable gate array, or FPGA, is another way of running embedded
program code. In this implementation, the custom application code is synthetized
on the logic-gate level. The FPGA approach allows tuning specific algorithms per-
formance nearer the hardware-implementation level [22]7. Different implementation
techniques are tradeoffs between programming flexibility, performance, cost and
power usage.

2.2.3 Development Tools

The application development differs somewhat for microcontrollers compared to the
regular PC-style application development. The basic mode of operation remains as
writing code, compiling it and running it on the specified microcontroller, and is often
called the “target”. There are some notable considerations, however. On a PC, the
resources available for developing and debugging tools are usually readily available.
For example, hooking up a debugger to a simple program is done completely in
software. Special and often expensive hardware-based tools are needed for MCUs
to achieve the same functionality. In addition, after the compilation of a simple
program, it needs to be flashed to the MCU in the embedded systems context. For a
PC, the program is readily available to be run.

Integrated development environments (IDEs) for microcontroller development
are available. Manufacturers provide specifically preconfigured IDEs for their mi-
crocontrollers. Some manufacturer-independent IDEs like KEIL or IAR also exist.
There is usually an added license cost to using these products, however. This cost
naturally adds to the overall development costs for microcontroller projects. The
actual compilation of the program code needs special compiler tools because the
target microprocessor architecture is usually different than where the actual program
development work is done. These tools are called cross-compiler tools. These tools
produce application binary that can be run on the target microcontroller. For a
project, it is important to have strictly specified compiler settings for all of the
participating developers for the present and future so that the produced application
binary will always be identical for the same set of input files.

After compilation, the application binary needs to be transferred to the target
microcontroller. This is called programming the microcontroller. These programming
devices are usually target-platform-specific. They also vary in speed and the amount
of available slots for concurrent programming.

Features for debugging the application on target also exist. One of these solutions
is the JTAG8 interface. JTAG is probably the most widely used debugging solution

6First in, first out.
7Another technology called application-specific integrated circuit, or ASIC exists for embedded

systems. ASICs are actually implementations of the full application completely on silicon.
8Joint Test Action Group.

19

for microcontrollers according to [28]. JTAG-based debuggers connect to the micro-
controller test access port (TAP). Interacting through TAP via JTAG, the software
developer can see the state of the application from a development computer. The
developer is also able to place breakpoints, step in and out of functions, and inspect
variables when combined with IDE. Another debugging method is to devise an
UART-based proprietary binary protocol implemented in target application software.
Another endpoint for this protocol can be the development computer. The same
protocol can aldo naturally be used for test, verification, and calibration purposes.

Simulators also exist for embedded software. Simulating the program code without
an actual hardware platform makes the development task easier by eliminating the
need for having the target microprocessor available. Simulating eliminates the time
needed to program the code to target9. Simulator selection is very far from being
available for all microcontroller families, models, and variants. Developing and
verifying such a simulator is very costly.

A proper simulator can be a great asset in developing embedded software. A sim-
ulator eliminates the need to program the application binary to the microprocessor.
In addition to saving time and relaxing the need of the specified programming devices
discussed earlier, the simulation approach also reduces the wear of the microprocessor
as every write to the programmable memory deteriorates it. Typically, the micropro-
cessor vendors guarantee a number of successful memory writes, after which write
operations are allowed to fail. This policy applies to both the programmable memory
of the microprocessor and other non-volatile type memories. Because simulators
are implemented in software running on the development platform (typically a PC),
directly inspecting the microprocessor and application state including register and
memory values is easy. Because the simulators are software-operated, interfacing
them with software-based debug and verification infrastructures is possible.

A general lack of simulators is considered one of the main reasons for researching
for an alternative solution for the testing of embedded software in a power electronics
context.

2.2.4 Programming Embedded Software

Now that some elementary concepts about embedded software have been declared,
it is time to take a short look at how a very simple embedded systems program
can be organized. In this section, we describe with C language a program for a
microcontroller. The program lights up a light-emitting diode (LED) for 3 seconds
when a button is pressed. Both the LED and the button are represented by GPIO
pins.

9Sometimes, however, the simulator initialization startup time negates this effect.

20

Figure 6: The LED timer program state machine diagram.

In embedded systems programming it is helpful to initially have some kind of
blueprints of the desired logical operation of the system under development. In
Figure 6 these blueprints are presented as a simple state machine diagram. This
diagram is followed during the development of the actual program code.
int main() {

// Initialize and start system
SystemInit();
setup_led1();
setup_button1();
setup_50ms_timer();

while(1)
{

// Sleep the CPU until we hit the next 50ms mark:
__WFI();
// Run the actual 50ms task:
run_50ms_task();

}

return 0;
}

Listing 1: Main function of a simple embedded systems program.

In Listing 1, the main() function of the program is shown. Execution of the
code starts from this function. In the beginning, the MCU runs initialization code
provided by the microcontroller vendor. Then, it configures LED and button pins
for operation. Finally, it sets up the internal timing peripheral device to operate on
50 ms time units, called “ticks” and start the main loop. In the main loop (“while
(1)”), two things happen. First, the MCU goes into sleep mode via the __WFI()
function. In sleep mode, the MCU core is mostly idling. It returns to full power
after the timer interrupt is received. The single 50 ms task function is run after this,
and then a new sleep period is started. In other words, the MCU wakes up every
50 ms tick period to run the task function. If there was an additional need to run

21

tasks, for example, every 500 ms, simple arithmetic could be used to determine when
enough multiples of 50 ms were elapsed to trigger the 500 ms task. However, here
only single task is needed, simplifying the main loop somewhat.

The aforementioned sleep/interrupt behavior was chosen to avoid the so-called
“busy-waiting”, where the MCU runs at full speed, continuously polling a condition.
This mode of operation would waste an extremely high number of clock cycles. There
are cases, however, where such behavior would be well suited for the task at hand.
#include "LPC17xx.h"

#define LED1_PIN_SELECTOR (LPC_PINCON->PINSEL3)
#define LED1_PIN_SELECTOR_MASK (((uint32_t)1 << 5) | ((uint32_t)1 << 4))
#define LED1_GPIO_MASK ((uint32_t)1 << 2)
#define LED1_GPIO_DIRECTOR (LPC_GPIO1->FIODIR2)
#define LED1_GPIO_SETTER (LPC_GPIO1->FIOSET2)
#define LED1_GPIO_CLEARER (LPC_GPIO1->FIOCLR2)

#define BUTTON1_PIN_SELECTOR (LPC_PINCON->PINSEL0)
#define BUTTON1_PIN_SELECTOR_MASK (((uint32_t)1 << 1) | ((uint32_t)1 << 0))
#define BUTTON1_PIN_MODE (LPC_PINCON->PINMODE0)
#define BUTTON1_GPIO_MASK ((uint32_t)1 << 0)
#define BUTTON1_GPIO_DIRECTOR (LPC_GPIO0->FIODIR0)
#define BUTTON1_GPIO_READ_DATA (LPC_GPIO0->FIOPIN)

Listing 2: Pin-related redefinitions in MCU program code.

In order to more easily understand the organization of further functions, let’s take
a look at one core practice of programming embedded systems. Listing 2 represents
the beginning of the program code file with the inclusion of vendor-provided, MCU-
specific system header. After that, there are various rows of #define statements.
These statements are used here to make the readability of the code better. For
example, usage of the symbol BUTTON1_PIN_SELECTOR_MASK is much more intuitive
and focused versus the awkward bit pattern (((uint32_t)1 « 5) | ((uint32_t)1
« 4)). This kind of redefining of obscure register values and various bit patterns is
a common practice in embedded systems programming.10

10Some definitions have been omitted here to retain brevity.

22

void setup_led1(void)
{

// Configure LED pin functionality to GPIO:
LED1_PIN_SELECTOR &= ~LED1_PIN_SELECTOR_MASK;
// Configure LED GPIO direction to write:
LED1_GPIO_DIRECTOR |= LED1_GPIO_MASK;
// Dim the LED:
LED1_GPIO_CLEARER |= LED1_GPIO_MASK;

}

void setup_button1(void)
{

// Configure button pin functionality to GPIO:
BUTTON1_PIN_SELECTOR &= ~BUTTON1_PIN_SELECTOR_MASK;
// Configure button GPIO direction to read:
BUTTON1_GPIO_DIRECTOR &= ~BUTTON1_GPIO_MASK;
// Make button read logical level high by default:
BUTTON1_PIN_MODE &= PIN_RESISTORS_MASK;

}

Listing 3: Setup of 2 GPIO pins for LED and button functionalities, respectively.

Listing 3 shows how the processor pins are configured to operate both as a led
and a button. For LED operation, the pin function is chosen as GPIO for both.
This is important, as each pin can act as many different peripheral functionalities.
The same selection is needed for the button pin. The next step is different between
the pins, as the LED pin is configured to be in write mode, and the button pin is
configured to be in read mode. In bit-level, this is about assigning a 1 or 0 bit to a
dedicated director position, respectively. Assigning a 1 without touching any other
bits can be done via straightforward OR operation. 0 bit is slightly trickier to set. It
is accomplished by taking the inversion of the 1 bit pattern, and then ANDing the
result. As a final step for LED, the GPIO value is set to logical 0 V, dimming the
light. For button functionality, the last step is to make the pin “normal” state 3.3 V
via the internal “pull-up resistor”. Combined with software, the active state of the
pin/button can be more easily made 0.0 V, or shorted to ground.

23

void TIMER0_IRQHandler(void)
{

// Dummy interrupt handler to wake the system from sleep
LPC_TIM0->IR = LPC_TIM0->IR;

}

void setup_50ms_timer(void)
{

// Clear counter and generate interrupt when timer matches:
LPC_TIM0->MCR |= (TIMER0_MR0_INT_MASK | TIMER0_MR0_RESET_MASK);
// With prescaler set the counting step to 1 ms:
LPC_TIM0->PR = (SystemCoreClock /

(CONV_1MS_TO_HERTZ * TIMER0_CLOCK_DIVISOR)) - 1;
// Make counter count to 50 counting steps, equaling 50 ms:
LPC_TIM0->MR0 = TIME_50MS;
// Connect the interrupt handler:
NVIC_EnableIRQ(TIMER0_IRQn);
// Finally, enable the timer:
LPC_TIM0->TCR |= TIMER0_ENA_MASK;

}

Listing 4: Dummy interrupt handler and 50 ms timer configuration.

In Listing 4, the timer functionalities are defined. There is a dummy interrupt
handler, whose only task is to clear the interrupt condition. This elementary handler
is needed to make it possible to wake the MCU from sleep mode periodically.

An actual timer configuration function is the most complicated part of the whole
program. The first instruction manipulates the MCR, or match control register. It
makes the timer execute the interrupt handler and reset the timer value once the
counter value equals the MR0, or match register 0 value. The PR, or prescaler register,
controls how many clock cycles need to pass before the counter is actually incremented
by one unit. Here, the adjusted PR value was made to correspond to 1 milliseconds.
MR0 value was set to cause a match when 50 times the 1 millisecond period has
passed. Finally, in the function, the interrupt handler is connected and the timer set
to run.

24

Figure 7: An excerpt from NXP Cortex-M3 LPC176 datasheet. (Copyright: NXP
Semiconductors N.V.)

The timer-based definitions presented in the program code are, of course, well-
defined. The definitions can be found in microcontroller-specific documents called
datasheets. These documents are provided by MCU-vendors in order to make the
development of software in the specific microcontrollers possible. Figure 7 shows an
excerpt of the LPC1768 datasheet. Only a small part of the full functionality of the
MCU is presented here as the full document spans almost 850 pages.

25

void run_50ms_task(void)
{

static volatile uint8_t u8_state = STATE_NORMAL;
static volatile uint8_t u8_button_samples = 0;
static volatile uint8_t u8_led_wait_samples = 0;

if(u8_state == STATE_NORMAL)
{

if((BUTTON1_GPIO_READ_DATA & BUTTON1_GPIO_MASK) == 0) // Button read ok
{

if((u8_button_samples++) >= TIME_200MS_IN_TICKS)
{

LED1_GPIO_SETTER |= LED1_GPIO_MASK; // Enough read samples,
u8_button_samples = 0; // light up the LED
u8_state = STATE_LED_ON; // and change state.

}
}
else
{

u8_button_samples = 0;
}

} // Check pass of 3 seconds in state STATE_LED_ON:
else if((u8_led_wait_samples++) >= TIME_3S_IN_TICKS)
{

LED1_GPIO_CLEARER |= LED1_GPIO_MASK; // Enough wait samples,
u8_led_wait_samples = 0; // dim the LED and
u8_state = STATE_NORMAL; // change the state.

}
}

Listing 5: The 50 ms task function of the LED controlling program.

The most important part of the program code for the system is the 50 ms task
function shown in Listing 5. As shown earlier in the state machine diagram, the
system has 2 states, namely “Normal” and “LED On”. In the normal state, the input
of the control button/pin is read. In Normal state, the read happens once every 50
ms. The button is determined to be pressed down when the corresponding pin is
connected to ground. When 4 reads have occurred at 50 ms intervals, the LED is lit,
button sample counter reset, and the state changed to LED On state11.

The LED On mode counts how many 50 ms samples have passed. When there
has been enough samples for 3 seconds, the LED is dimmed, the local sample counter
is reset, and the state is declared again as Normal. A complete set of program codes
is available on GitHub [23]. A video demonstration of the working system is available
on YouTube [24].

After having introduced both concepts individually, we can then take a look at
how embedded software can be used in power electronics.

11It should be noted that in Normal mode if an inactive button state (1) is read after an active
state (0), the sample counter is also reset. The behavior is called filtering. It is undesired to trigger
a functionality based on a single sample, which may even be a mishap or temporary electrical glitch.
Therefore more samples are investigated.

26

2.3 Embedded Software in Power Electronics
Figure 2 shows a block diagram of a power electronics device on the left and an
actual device (rectifier) on the right. The block defined as a microcontroller housing
seats the microprocessor that in turn runs the program code. A detailed view of the
housing is shown in Figure 8.

Figure 8: A picture shows the microcontroller housing of a power electronics device.
On top, there is the conductive pathway that is used as an interface to interact
with the power processing circuitry. The microcontroller is shown on the left and
communication sockets on the bottom right.

In this design, the microcontroller housing printed circuit board (PCB) interfaces
with power processing circuitry via conducting pins. These electrical pathways can be
used to read state information from power processing circuitry (for example voltage
and current). The microcontroller can also alter the state of the power conversion by,
for example, changing the reference voltages for power processing circuitry controller
or enabling or disabling the state of the device output. These alterations can be
performed by using microprocessor PWM and digital output peripherals, for example.
In the picture, there are also two RJ45 connectors visible. The microcontroller uses
these connectors in forming a messaging bus to communicate with other products. A
power electronics design can also include multiple different processors that perform
dedicated tasks.

2.3.1 Benefits

Having embedded controllers in power electronic products has many benefits. As
discussed in the previous section, a microcontroller can read measurements and other

27

information from the power conversion circuitry. The microcontroller can analyze
and store this data as well as determine the error conditions in operation (either
internal or when physical conditions reach alarm levels).

As hinted in the previous section, the controller can also participate in the com-
munication bus with other devices. Multiple devices can act together in cooperation
to fulfill dedicated tasks or report measurement and diagnostics data to upstream
devices. Some devices allow the reconfiguration of their parameters via the commu-
nication bus (for example for setting voltage limits and configuring alarms). It is
also possible for devices to collect statistics about their operation and display this
to the user when requested12. Some power electronics communication buses can
be used during production testing at the factory for calibrations and verification
measurements.

Many proprietary and standardized communication protocols for power electronics
exist. One of these protocols is PMBus [32]13. Some of the other protocols used in
power electronics running embedded software are SNMP14 and even plain HTTP15.
If communication happens only between devices, a lightweight binary protocol is
preferred.

2.3.2 Future

There is active research being conducted using FPGA-based solutions for power
electronics devices [14]. As the unit prices of the technology become lower, FPGA
chips can be more interesting candidates for future designs.

Another trend of power electronics is the need for cloud-connected services. In
these scenarios, a lightweight protocol is used to transfer device data to the cloud.
This data can be accessed via multiple different user interfaces. A rudimentary web
browser-based interface can be implemented, but market demand is getting focused
on mobile phone applications for cloud-connected power electronics products.

The last emerging trend in power electronics running embedded software is
self-diagnosing devices. Devices can determine when they have a fault condition
and report this event to upstream devices or the cloud. If the amount of data
sent to the cloud is sufficiently large, machine learning algorithms can be used to
predict upcoming fault conditions based on variations of measurement values. In this
case, automated systems like enterprise resource planning and customer relationship
management (ERP and CRM, respectively) can proactively propose the ordering of
spare parts. An overview of this kind of system is shown in Figure 9.

12Rudimentary information about the device can also be displayed for example via LED lights
operated by the microcontroller.

13Power Management Bus.
14Simple network management protocol.
15Hypertext transfer protocol

28

Figure 9: The image shows the measurement data flow from power electronic devices
to the cloud. Using data mining, the predictions of spare part needs can be made
and this data used when interacting with the customer via ERP and/or CRM.
Measurement results and status information can also be displayed in a web browser
user interface or dedicated smartphone applications (Sub-picture copyrights: Samsung
Electronics Co. Ltd., Lenovo Group Ltd., Flickr.com/flow2u).

In this section, we discovered what power electronics and embedded software
are. Different kinds of processors were also introduced, as well as some common
development tools. We also saw how embedded software can be used in power
electronics and took a look at the upcoming trends in the industry.

29

3 Embedded Software Testing
In this section, we take a look at how embedded software testing and verification
is carried out. Testing goals and constraints are presented and analyzed. Different
testing and verification methods are also showcased and investigated.

3.1 Benefits of Testing in Industrial Power Electronics
Most publications and papers do not explicitly state why software is tested. It is more
common that publications list many ways, methods, and strategies for testing but
don not directly ask or answer the question: Why? Burnstein et al. state that testing
“provides strong support for the development of high-quality software” [7], which is
indeed the direct goal of testing. The natural question thereafter after this point is:
Why do we need high quality software? High quality software is easier to maintain,
develop, and operate. The operation of this kind of software is also less error-prone.
With good-quality software, there is a smaller risk of facing heavy financial and
public relations consequences that may happen on some software failures as briefly
discussed in Section 116.

Power Electronics industry differs somewhat from the “regular” software industry.
In PC and mobile handset applications, it is more of a norm than an exception to
have regular updates to the software. These updates are usually applied by the end
users. The case for power electronics products can be quite different. For starters,
such a product might not have a field-operable mechanism for installing updates. In
order to cut mass producing costs, it is usually carefully investigated if implementing
this kind of mechanism is justified regarding the development time and additional
hardware requirements to facilitate the functionality. Another issue is that, even if
such update functionality existed, there is no guarantee of a feasible delivery method,
as opposed to PCs and handsets where usually some kind of Internet connection is
always available.

It is usual that in mass-produced power electronics the software needs to be
working on an acceptable level beginning from the first production batch after proto-
and acceptance series for the full intended lifetime of the product. Otherwise, the
manufacturer risks a costly recall process if a warranting error is found from the
units after they have been shipped to end users in various locations of the world.
In other words, the manufacturer usually needs to get the software “right” straight
from the beginning.

As summarization: Testing aims to make software development easier and reduce
the overall costs by preventing failures after the product launch. Testing is especially
important for products that do not have field-operable mechanisms for software
upgrades.

16Overall, healthy criticism should be applied when dealing with software defect costs. For
example, the “classic” 1* design/6.5* implementation/15* testing/100* operation defect cost rule
has been attributed to an institution called “IBM Systems Sciences Institute”. The problem about
this attribution and thereby the whole rule itself is that such an institution seems to have never
existed.

30

3.2 What to Consider when Testing in the Power Electron-
ics Context

Many factors contribute to embedded software testing. There are some additional
ones when considering the power electronics context. From a generic point of view,
the things to consider in testing fall into two types, namely constraints and resources.
Some constraints are explicit and some are derived, for example the unavailability of
a resource is a constraint.

Two basic project resources are time and money [18]. In an industrial power
electronics project, a customer17 usually determines how much time is available in
the realization of the project. The customer also determines the scope and quality
level for the project. Depending on the timing and other constraints, the amount
of of funding required is also budgeted for a project. Other natural points to be
taken into consideration while testing are the number and the skill set of the people
involved in the project.

Some industrial power electronics projects are special in a sense that they need
specialized hardware for testing. For example, if the product under development
needs to operate under a variety of temperatures, a climate chamber may need to
be used. Especially the communication of an embedded systems product via I2C or
other similar buses may be severely affected in temperatures of -40 degrees centigrade.
It is hard to figure out the complete effects of such environments and their change
gradients with a simple desktop simulation. Therefore, climate chambers can be
essential in test and verification work regarding embedded systems power electronics
with the communication bus, especially when the projected operation temperature
differs significantly from room temperature or changes over time.

The control of some power electronics devices18 is often driven by PWM signals.
For some devices from this field, the PWM is used to carry out syncing operations
between MCUs and other components. Quality PWM signal generators and analyzers
are essential when testing embedded software running on power electronics devices
in the development phase.

Simple simulations cannot ascertain the correct functionality of the final power
electronics product. They may, of course, give implications about how the software
running inside these applications operates and conforms to specifications, but for
the final product needs to have additional testing conducted for verification. For
products designed to convert or sink large amounts of electrical energy, high-capacity
power sources and loads may be used. One such device is pictured in Figure 10.

One notable constraint specific to industrial power electronics testing are standards
and regulations. One such standard is the IEC 60950-1 [9] that encompasses the
safety requirements of information technology equipment. Even though this specific
standard is not software-related, safety considerations should also be kept in mind
in software development, as implications of high-energy power electronics products

17A customer may be an entity external or internal to the company overtaking the project.
Sometimes companies develop their own products for sale and sometimes they contractually develop
products for other companies.

18Especially in inverter technology.

31

Figure 10: Programmable 40V/375A/15kW power supply. (Copyright: Chroma
Systems Solutions, Inc.)

can be considerable. There are usually many standards and regulations involved in a
project. If the product is sold in many market areas, more regulations may apply.
The customer may also oblige the developing party to adhere to other specifications
at will.

3.3 Testing and Verification Methods
Multiple approaches for the testing and verification of embedded software and software
in general exist. Some of these are more general and others more specific to embedded
systems. A partial list of the methods is presented here for investigation.

3.3.1 Checklists

Checklists are a way of using predetermined listed knowledge to identify the possible
risks of a project [3]. In addition to identifying the risks, checklists also contain
information about how to deal with the risk. A typical software project checklist is
shown in Figure 11.

3.3.2 Code Reviews

Reviews are an important part of the verification of a project. Reviews can concentrate
on the availability and completeness of documents defined in process instructions.
The aforementioned checklists are an example of such documents, other examples
being plans, backup plans, schedules, purchase orders, authorizations, etc. Processes
may dictate many different reviews during different stages of the project.

The program code can also be reviewed in code reviews. In these events, the
author presents his/her program code to other participants, who usually include
peers. Code organization and architecture are scrutinized and the possible errors
and dangers are pointed out. A follow-up review may be organized later on after
giving time to programmers to incorporate changes in the code.

3.3.3 Test-driven Development

Test-driven development is a practice where program code tests are written prior to
actual application code. In this practice the functionalities of the application are

32

Figure 11: Software project checklist. (Copyright: Boehm/Software risk management:
principles and practices)

identified first, and then the test code is written for that specific functionality [12].
After this, the actual application code is written and tested with the pre-written test
code until the functionality works. The method is iterated for all the functionalities
of the application.

In the embedded systems context, this verification method needs to take into
account the hardware-dependent nature of the devices under test. The test platform
may need to expose the microcontroller peripherals, pins, and other functionalities
to the test framework in an emulated way. These emulated components can be used
as direct input for testing or as defining the environment for testing.

3.3.4 Simulation

Simulation can be utilized in the testing and verification of some embedded software.
In some cases, the program code for MCUs can also be compiled for the PC envi-
ronment. The binary can then be run on a PC and the results evaluated. Another
form of simulation is the use of scientific calculation tool, such as MATLAB, in
the development and verification of control algorithms. One such algorithm is the
proportional–integral–derivative, or PID, and its derivatives. In some cases, simple
spreadsheet programs can be used to at least partially verify the correctness of an
algorithm.

33

3.3.5 Unit Testing

According to Sen et al., unit testing means splitting the application into small
units and functions that are tested individually [26]. Input for the functions can be
generated and the generation can be automated. For a successful software project,
unit tests are not by themselves a sufficient way to ensure the quality of the product
under development [6]. Instead, other types of testing and verification are also
needed.

3.3.6 Regression Testing

Regression testing is the practice of establishing confidence to already tested parts
of the code after changes have been introduced [17]. It is carried out by specifying
and executing regression tests. After a change in the codebase, one of the following
happens: Either all of the tests are repeated or only a subset of tests are repeated.
The prior is called the retest-all approach and the latter the selective retest [30].

In the embedded software context, special care should be taken when running
automated regression testing. As discussed in section 2.2.3, the microcontrollers
have a limited number of cycles that can be used in rewriting with new program
code. If regression tests are run frequently and especially with the retest-all method
in a big embedded project, there is a risk of wearing out the internal programming
memory. With microcontrollers nowadays having a minimum reflash count of 10,000-
100,000, this risk can be quite small, but should still be kept in mind, especially
when implementing automated test systems.19

3.3.7 Static Code Analysis

Static code analysis is performed with special analysis tools, that check that the
structure of the code conforms to standards set in the project. Such an analyzer
tool can enforce the programmers to have a well-defined code organization with
enough comments while avoiding confusing or dangerous structures and practices [6].
Static code analyzers can be configured to enforce agreed style guides and also actual
standards, such as MISRA20 C [20]. An example of a static code analyzer is the the
Lint software [34]21.

19It should be emphasized that the actual maximum allowed reflash counts can be considerably
higher. Once, an MCU with 100,000 guaranteed reflash-cycles was tested for wear. The test setup
ran for weeks, constantly erasing and flashing the MCU. It turned out that the testing was unable
to wear down the MCU during the test time. The testing was stopped when 3,000,000 reflash-cycles
had been induced.

20Motor Industry Software Reliability Association.
21Lint was originally the name of UNIX command-line software that was used to spot irregularities

in C code. Since the introduction of this specific tool the word “lint” has become a synonym for all
linting tools. Lint-like functionalities or lint modules exist in many modern software development
products.

34

3.3.8 Dynamic Code Analysis

Dynamic code analysis is the practice of analyzing the execution of a running program.
In this practice, the inputs of the testable functional units are manipulated and the
result and runtime information are recorded [1].

Dynamic code analysis tools also exist. One such tool tailored for embedded
software is called VectorCAST [31]. This tool can analyze the existing codebase and
generate dynamic unit tests without the user actually needing to write any code at
all. Compiled test code can be run in a simulator/emulator or also on the actual
hardware.

3.3.9 Hardware-in-the-Loop

Hardware-in-the-loop (HIL) is a design, implementation, and verification methodology
where the developed embedded system’s control part is run on actual hardware, but
its environment is simulated externally to some extent due to the unavailability of
the actual environment [10]. This unavailability may be due to cost or complexity
issues. Bouscayrol [5] has defined different types of HIL simulations, including the
“signal level HIL simulation”, which is presented in Figure 12. The VectorCAST tool
described in previous section also utilizes HIL principles.

Figure 12: Schematic of signal-level Hardware-in-the-Loop simulation (Copyright:
Bouscayrol/Different types of hardware-in-the-loop simulation for electric drives)

3.3.10 Black Box Testing

Black box testing means testing a system without prior knowledge of the internal
structure of the system or its source code [13]. Black box testing is also called
functional testing. One benefit of black box testing is the separation of the roles of
programmer and tester. Due to the invisibility of the internals of the system, the
test coverage is limited.

35

3.3.11 White Box Testing

White box testing is the practice of testing a system while having intrinsic knowledge
about its internal workings, including architecture and source code [13]. White box
testing enables testing the control flows, branching, and code path, among other
things. An advantage of this test method is that it provides better test coverage.
As a downside, the method is quite costly to implement to attain perfect or high
test coverage. A test methodology combining both black box testing and white box
testing is called gray box testing.

3.3.12 Fuzzing

Fuzzing is an automated test technique that means flooding inputs of the tested
system with invalid, partial, and random data [21]. The methodology is cost-effective
in relation to manual boundary testing. Manually devising the “correct” test points
can be a resource-intensive task especially for a human, whereas automatically and
randomly flooding the input and logging pass and fail data is easy and more easily
automatable. A total random nature of the flooded signals is not an absolute necessity.
Analysis of the program code of the tested system can be conducted, yielding efficient
adjustments to the flood data.

3.3.13 Continuous Integration

In practice, continuous integration (CI) means a framework that tracks the changes
in a shared source code repository and then executes predetermined actions based
on these changes. A compilation step is executed for languages needing compilation.
After passing compilation tests, unit tests can be run. And after unit tests, the
whole application could be deployed to test environment and further tests run there.
Finally, report of the full process would be automatically compiled for the developers
and necessary build artifacts archived. CI is the cornerstone of agile software devel-
opment [27].

In this section, we established the benefits of software testing with power elec-
tronics. We also investigated special testing considerations in the power electronics
context and showcased some of the test and verification methods available.

36

4 Our Approach
This section describes an approach for testing embedded software in a power electron-
ics context. The solution described here can be used to test embedded software in
general also, but the emphasis is on traditional microcontrollers and power electronics.

Figure 13: Overview of the devised system for testing embedded software in power
electronics context.

4.1 Requirements
Primary requirement for the solution was to build a system that could be used to test
embedded software running on microcontrollers in power electronic applications. The
solution should be fast enough to facilitate observing the necessary signal changes,
and it should also be able to generate such signals itself. It needed also be possible to
use the system in both “manual mode” and as part of automated test infrastructure.
Other necessities were the ability to store test specifications and results permanently
and to have the system as easy to use as possible via good user interface (UI) design.
Low hardware cost of the system was also one design goal.

4.2 High Level Architecture
To fulfill the requirements, a 3-part component core system was planned. It utilizes
the concepts of Hardware-in-the-Loop, Continuous Integration, White Box Testing,
and Black Box Testing from Section 3.3. The components of the system were
called Test Controller, Firmware Flasher, and Probe Microcontroller. Interfacing
with automated test infrastructure needs an actional component called Continuous
Integration, or CI Service. CI is presented in order to define its relationship with

37

the planned core system. Figure 13 shows the overview of the plans regarding the
components and their relations.

4.3 Individual Components
In the following sections, we briefly discuss each component of the devised system. It
should be noted that when integrating the components and performing actual testing,
great care should be taken to ensure that grounding and isolation of individual
components are as expected in order to prevent electrical disturbances and erroneous
test results. If the developed system were to be used to test actual high-energy power
conversion products running embedded software directly, the safety and isolation
considerations would be even more severe.

4.3.1 Test Controller

The Test Controller is the component that directly communicates with all of the other
components of the system. It has an interface toward the CI service for receiving
built application binaries as well as another interface for delivering the application
binary to the Firmware Flasher for flashing to the Device Under Test (DUT). The
Test Controller has a Web User Interface (WebUI) for performing manual tests or
defining new test cases. A partial sketch of the WebUI is shown in Figure 14.

Figure 14: A partial Web User Interface of the Test Controller.

The Test Controller also has a local storage for test cases and a repository of test
results. An off-device backup mechanism should be used in order not to lose test
specifications or result data. The Test Controller instructs the Probe Microcontroller
to test the DUT and to receive test results afterward. Communication between these
two components is performed via a UART bus.

38

4.3.2 Firmware Flasher

The Firmware Flasher is a specific tool to flash the necessary application binary
to the DUT when needed. This component should be made easily replaceable, as
different DUTs require different tools for flashing. In an ideal case, one generic tool
would cover all of the possible types of microcontrollers for flashing. As firmware
flashing wears down the DUT MCU, a counter should be implemented in the Test
Controller to act as a safeguard in testing when approaching the specified rewrite
count limits of the MCU.

4.3.3 Probe Microcontroller

The Probe Microcontroller is the component that directly interfaces with the end
product currently being tested. It has a dedicated protocol for receiving test specifi-
cations as scripts from the Test Controller. The results are stored locally for retrieval
later on. The Probe Microcontroller includes different instruments, such as GPIOs,
PWM devices for setting and analyzing signals, DACs and ADCs for setting and
analyzing voltages, and communication buses for sending and capturing information
(I2C, SPI22). The Probe Microcontroller includes a test sequencer with a specified 1
microsecond timestamping.

4.3.4 Continuous Integration Service

The Continuous Integration Service is used when the system is connected to au-
tomated test infrastructures. In the service, a new code commit to the repository
codebase could trigger a build of the application binary. This binary would then be
transferred to the Test Controller for relaying for flashing. After flashing, the related
specified tests could be run automatically, and the results for test runs stored.

In this section, we devised a plan and architecture for building a system for testing
embedded software in a power electronics context with the concepts introduced
in Section 3.3. Each component of the system was defined separately, and their
interconnected relationships were also defined.

22Serial Peripheral Interface bus.

39

5 Implementation
The implementation of the solution described in Section 4 is described in this section.
Both the hardware and the software parts are discussed. Notable features and
functionalities are also showcased.

Due to timing constraints and the amount of effort needed in implementing
the complete design as a working system, it was decided that only the Probe
Microcontroller part would be implemented during the project. This section reflects
the decision.

5.1 Hardware Implementation

Figure 15: Probe for microcontroller testing constructed on a prototyping board.

As part of the development process, a housing for the Probe Microcontroller was
constructed on prototyping stripboard. Operating software was also developed. The
MCU type was selected to be ARM23 LPC1768 with the Mbed platform PCB because
of relatively cheap price and previous knowledge of the microcontroller.

23Advanced RISC Machine.

40

The complete physical construction of the implemented system is presented
in Figure 15. The board has on the upper left corner a housing for the Mbed
LPC1768 PCB. The PCB is pictured pressed into the socket. The approach of
using a PCB/microcontroller socket in prototyping allows for soldering the necessary
components to the board without the risk of damaging the processor. Furthermore, in
case the PCB/microcontroller breaks down during operation, it can be replaced easily
without the need for major modifications to the rest of the prototyping stripboard.

Oriented vertically in the middle there is an array of pins. These pins are routed
from the LPC1768 processor. They are peripheral device pins that can be used
for testing input signals sent to the device under test (DUT). The pins can also
capture signals originating from the DUT. With this captured signal information
compared with recorded timestamps, the verification of microcontroller software is
made possible. The pins are labeled with symbolic names to help the test operator
to wire the correct signals to the microcontroller under testing.

In the upper right part of the stripboard are two static pinstripes. The upper
pins are at ground potential, whereas the lower pins are at the 3.3 V operating
voltage constantly. Below these two pinstripes there is an additional set of pins
for relay functionality. In the construction, a PNP-type transistor is controlling
the input power of the microcontroller under testing. A dedicated probe pin p8
GPIO signal is used to control the conductance of the transistor from emitter pin to
collector pin. The DUT input power is regulated 3.3 V voltage from the LPC1768
PCB. This organization makes it possible to control DUT input voltage with weaker
control-voltage. A dedicated circuit could be built to draw power directly from
stripboard power input without going through the LPC1768 PCB. The relay control
pin from the Probe Microcontroller, as well the transistor-control pin, are covered
with black heat-shrink tubing in order to prevent the accidental connection of wires.
The actual transistor control wiring is on the backside of the stripboard.

Figure 16: Mbed LPC1768 microcontroller PCB pinout. (Copyright: NXP Semicon-
ductors N.V.)

For testing of the actual microcontroller, the system needs to be powered up,

41

which happens via the LPC1768 PCB micro-USB24 connection with 5 V default
voltage. The PCB circuitry has built-in converters to scale the voltage down to 3.3 V
for both the LPC1768 and DUT to use. Another external connection that is needed
is the system UART communication port on pins p13 and p14. Figure 16 shows the
pin names and peripheral devices mapping of the LPC1768 microcontroller. As seen
in the figure, the system UART communication port was chosen this way to retain
the possibility to use I2C communication peripherals on pins p9/p10 and p27/p28
while sacrificing the usability of the SPI peripheral on pins p11 - p13.

5.2 Software Implementation
Software for the developed system was implemented as C code compiled with an
ARM GCC25 compiler. An empty Mbed platform project was used as a basis for the
microcontroller probe codebase. The project was converted to regular C code project
and readied for further development by removing unnecessary libraries, object files,
and references. One benefit of the aforementioned approach was that the necessary
processor-specific header and linker files were left intact. The produced minimal
project was then continued further.

5.2.1 Overview of Design Decisions and High-Level Architecture

Even though the LPC1768 microcontroller has a floating-point-unit (FPU), it was
decided that all of the needed calculations would be done as integer-based. The
absence of FPUs has been the baseline in low-end microcontrollers; therefore, there
was no reason to hinder portability by writing FPU code which would not work on
other types of probe microcontrollers. The simplicity of the mathematical operations
also supported the usage of integers. Depending on the situation, the length of the
integers used varied between 8 and 32 bits. The granularity of the clock driving
the test cases was chosen to be 1 microsecond. In reality, however, there is more
variation in the speed the test steps are actualized. main() function of the Probe
Microcontroller software is presented in Listing 6.

24Universal Serial Bus.
25GNU Compiler Collection.

42

int main() {

uint32_t i = 0;

// Initialize and start the processor first
SystemInit();
for(i = 0; i < SYSINIT_SETTLE_TIME; i++){ ; } // Give time for system to settle

pin_reset_all(); // Reset all pins to gpio, direction in, weak pullup
init_wall_clock(); // Initialize clock system to be used with testing
init_device_list(); // Initialize list of all devices available for testing
led_init(); // Start initializing individual devices
pwm_init();
dac_init();
relay_init();
gpio_init();
reset_uart_flags(); // Start setting up UART communication
uart_init(UART_NUM2);
set_sys_uart(UART_NUM2);
send_uart_poll(pt_sys_uart, (uint8_t*)"ready\r\n", 7); // Print acknowledge

while(1)
{

pwm_handle_monitors(); // Handle PWM signal analysis...
pwm_handle_monitor_logging(); // ... and logging too
gpio_handle_monitors(); // GPIO signal monitoring
handle_uarts(); // Check if UARTs have new input data to be processed
check_wall_clock(); // Run the test sequencer when in run mode

}

return 0;
}

Listing 6: The main() function of the probe microcontroller software.

As can be seen from the listing, the function organization consists of two main
parts. The first part is the collection of initialization routines and the second part is
the continuously running handler loop. Another way of implementing the continuous
functionalities would have been the usage of timer interrupts. Busy-looping was
mainly chosen because of the ease of implementation. In this approach, test event
accuracies of 4 us were not uncommon.

There was also a tiny concern about resource overhead. Every time the microcon-
troller jumps to the so-called interrupt context, a number of instruction cycles are
used. As some of the functionalities in the probe system are highly time-dependent
with interrupt-coupling, interrupts were ruled out as a driver for the main loop as a
precaution. The main loop operates continuously in full-speed checking sequentially
for tasks and advancing the test sequencer position when needed.

Some interrupts were still used in achieving the full functionality of the system.
They were used in setting flags when, for example, a GPIO pin state is altered.
In PWM monitoring mode, the interrupts help keep constant track of the last
encountered up and down signal hold times. Actual logging and analysis of the events
happening during testing are carried out in non-interrupt context through the main

43

loop, in which various functions analyze the flags set by interrupts. These functions
record changes to the test log.

All notable implemented features of the system are presented in the list below.
In the subsections after the list, we highlight some of these features.

• UART-based communication protocol between the Test Controller and the
Probe Microcontroller

• Device list with corresponding pin identifiers

• Sequencer for test runs with microsecond granularity

• Sequencer binary parameter and result translation

• Probe type and version identification functionality

• Test sequence resetting, definition, and executing

• Post-test result gathering

• Relay functionality for DUT input voltage setting

• PWM signal setting and capture/analysis

• GPIO pin state setting and capture

• DAC analog voltage setting

• Built-in LED control functionality

5.2.2 UART-Based Communication Protocol

One of the first software-related tasks in the project was to build a communication
protocol. UART-driven on platform pins p13 and p14 as pointed out in section 5.1
was the protocol selected. The bus speed was defined as the popular 115200 bits per
second. Due to the design of the Mbed LPC1768 PCB, on-chip debugging was very
hard to achieve and in the end was not actualized at all. Therefore, the development
process of the UART communication relied on the usage of the PCB LEDs. They
were primitive but essential tools in analyzing set variables and the code paths
under scrutiny. Reception functionality of the UART device was implemented as
interrupt-driven, but all communication originating from the Probe Microcontroller
was chosen to use register polling for sending. After the basic UART functionality
was ready, debugging of the system became much easier, with the notable exception
of the PWM capture, which is described in Section 5.2.5.

The oscilloscope was essential in the verification of all the implemented function-
alities. Figure 17 shows the connection of oscilloscope probes in the early stages of
development, whereas Figure 18 shows captured ASCII debug data string “Hello”.

44

Figure 17: Oscilloscope connection during UART functionality debugging.

Figure 18: Oscilloscope in analysis mode, after having captured a debug string
“Hello”.

After the underlying UART device support was mature enough, the actual
protocol was implemented. Protocol consists of 3 different commands, namely
identify, list devices, and test.

The identify command is used to identify which microcontroller probe type

45

and version is connected. In the future, the Test Controller can use different probes
for testing different microcontrollers. Identifying the probe first allows the selection
of appropriate test cases. The list devices command and test command are
described in more detail in subsections 5.2.3 and 5.2.4, respectively.

5.2.3 Device List

Figure 19: Device listing command response from the Probe Microcontroller.

The device listing command gives an exact listing of the available devices of the
specific Probe Microcontroller. The command output is shown in Figure 19. This
output tells what functional devices are available for testing and via which pins. The
printout shows following types of devices: gpio, pwm, dac, and relay. The view
conveys extensive important information. First of all, it tells the symbolic device
names being used, for example, gpio22. For PWM devices, it should be noted that
the names sharing the same main numeral share the same PWM clock internally.
That means, for example, with device pwm1.3, you must use the same base frequency
if, for example, pwm1.5 is used at the same time. More about PWM functionalities
is available in section 5.2.5.

Separated from the first field by the symbol : is the pin identifier. This identifier
corresponds to the printed names on the prototyping board pins, as can be seen in
Figure 15. Note the pwm2.0 device that lists two pins, namely p29 and p30. This
kind of listing means that, in order to achieve the declared device functionality,
both pins need to be used simultaneously. Reason for this syntax is presented in
Section 6.3.

After the final separator, each line has a list of opcodes the specific device
implements. For example, the gpio16 lists both monitor and set, whereas the

46

gpio15 can only do the set functionality. Other proposed but not implemented
commands are the read command for reading instantaneous data and the send for
sending data via UART, SPI, I2C, and similar devices.
typedef struct _dev_desc_t
{

uint8_t au8_probe_dev_name[DEV_MAP_BUF_SIZE];
dev_type e_dev_type;
uint8_t u8_pin_count;
uint8_t u8_pin_group;
uint8_t u8_pin_id;
uint8_t u8_cap_count;
uint8_t au8_probe_pins[DEV_MAP_DEV_PINS_MAX][DEV_MAP_BUF_SIZE];
uint8_t au8_processor_pins[DEV_MAP_DEV_PINS_MAX];
step_e ae_capabilities[DEV_MAP_CAPS_MAX];

uint8_t (*u8_make_step_params)(step_e e_param_step_type,
uint8_t* pu8_param_command,
uint8_t u8_command_len,
uint8_t* au8_step_params,
uint8_t* pu8_step_params_count);

uint8_t (*u8_preconfigure_for_step)(struct _dev_desc_t* pt_param_device,
step_e e_param_step_type,
uint8_t* au8_param_command,
uint8_t u8_param_command_len);

void (*execute_step_params)(struct _dev_desc_t* pt_param_device,
step_e e_param_step_type,
uint8_t* au8_param_command,
uint8_t u8_param_command_len);

uint8_t (*u8_transform_binary_log)(uint32_t* pu32_param_entry,
uint8_t* au8_result_buffer,
uint8_t* pu8_result_size);

} dev_desc_t;

Listing 7: C language definition of generic device type.

C language definition of generic device type is presented in Listing 7. Each device
has a unique name, type, number of pins, and number of capabilities the device can
perform. Also listed are the actual capabilities as well as MCU-specific group and
pin id information. The au8_probe_pins holds the textual identifiers for associated
device pins; these pins are used to guide the user to connect the correct wires to the
microcontroller probe prototyping board. The au8_probe_pins is the presentation
of the same pins, but for mapping them to actual processor pins instead of the Mbed
platform/microcontroller probe board pins.

The rest of the definition consists of different callback function pointers. Whenever
a device is initialized, these callback function pointers are connected to device-
specific functions. For example, when initializing a gpio device, the functions
u8_gpio_make_step_params, u8_gpio_preconfigure_for_step,
gpio_execute_step_params, and u8_gpio_transform_binary_log are connected.
More of these device functions are presented in the next section.

47

5.2.4 Test Commands and Test Sequencer

As mentioned earlier, the developed Probe Microcontroller includes a test sequencer
that is operated by specific test commands. These commands are reset, define,
add, commit and run, and they need to be prefixed with the keyword test. There is
also the results get command for receiving test results after execution.

The reset command is used to reset the test program state and erase old test
steps. To start defining a new test program, the command define needs to be issued.
Internally, this command adds a special test step signifying the start of the test
program and also increments the global step counter. The add command is used to
add actual MCU peripherals to the test program. The add command takes 3 common
parameters, namely timestamp, device name, and opcode. After opcode, follow the
parameters specific to the device operation. For example, the 3rd LED can be lit with
the command test add 300ms led3 set 1 whereas 20% 110 kHz PWM generation
can be achieved with the command test add 100ms pwm1.3 set 1 20% 110kHz.
The specific parameters are run through the u8_gpio_preconfigure_for_step
callback, which validates the parameters and also performs binary translation for
them. This means transforming the textual parameters to binary form, which is
much faster to use during the actual execution of the test script. More comprehensive
example of a test script is presented in section 7.

The sequencer supports different kinds of definition suffixes. For timing the us,
ms, and s are available for microseconds, milliseconds, and seconds, respectively. For
frequencies, the Hz, and kHz suffixes are available. Voltage can be suffixed with mV
and V. A definition of 3.3V is possible here, because internally the voltages are
recorded with millivolt precision.

There exists a special device-like keyword called end that is used in conjunction
with timestamp to add ending to the text program. The commit command acts as a
hook point for verification of the complete test script. Issuing the run command sets
the sequencer to execute the script. In script execution, the Probe Microcontroller
software first resets all of the devices and pins implemented in software. This
includes setting corresponding flags, initializing filters and connecting interrupt
handlers, if needed. After this, the test script is analyzed from the end to the
beginning. It configures the chosen devices according to the test steps via the
u8_gpio_preconfigure_for_step callback function on per-device basis. Finally,
the test sequencer clock is initialized and the internal state is set to running.

During execution, whenever the sequencer encounters a new test step according to
its defined timeslot, the related device callback code gpio_execute_step_params is
run. It uses the fast binary parameters defined earlier to execute the desired test step.
Logging of test data also happens in binary form. The system shares a binary array
of 32-bit integers to store the log data. Whenever a test step is executed or interrupt-
based new data received, new entry is made. The entry size is completely dynamic.
After the test script has completed execution, the log data can be received via the
results get command. Another binary translation is performed to transfer the test
log data to human-readable form. The callback u8_gpio_transform_binary_log is
utilized for this purpose.

48

5.2.5 PWM Signal Capture and Generation

One notable device from the implemented system is the PWM device. It is capable
of both generating and capturing PWM signal, but the functionalities happen on
different pins due to the Mbed LPC1768 PCB and MCU architecture. PWM capture
is requested with the monitor keyword and for PWM generation the keyword set
exists in the test scripts.

Scheduling a PWM capture in a test script is a straightforward thing. The example
command test add 400ms pwm2.0 monitor sets the capture on for pwm2.0 device
when 400 ms of time has elapsed since beginning of testing. All of the notable changes
in signal are determined, including the start, end, change of frequency, and duty
cycle.

The PWM capture functionality was implemented by using dedicated capture
registers of two pins. Both pins have been configured to store amount of clock cycles
for respective registers. In addition, an interrupt routine is always running during
testing. This routine serves interrupts of the rising edge pin (other pin is detecting
falling edges, but without actual interrupts). When an interrupt is received, the code
performs the following operations:

1. Interrupt handler clears the pending interrupt.

2. The free-running PWM capture clock is zeroed.

3. The flag is set for the user context to indicate new sample.

4. User context polling finds the flag and runs the monitoring routine.

5. Monitoring routine stores the sample counts from 2 capture registers and adds
the correction to facilitate the context switch delay.

6. Routine adds sample values to the software filter and performs sanity check
analysis.

7. If there are irregularities in the sample train, filters are restarted.

8. The user context flag is cleared.

There is also another function that is run straight after performing the steps
above. This function is for logging purposes. It also performs analysis on the samples
of the PWM filter. If there are enough proper values and capture mode is on, the
characteristics of the signal are logged. If the signal has not changed since the last
analysis time, no new values are recorded. Extra care was taken to have as accurate
timestamps in PWM as possible. Filters store the timestamps of the time that the
first samples are stored. Therefore, even if the filter value analysis happened later
than the actual PWM signal change, the actual change time would still be logged as
a timestamp.

The PWM signal generation functionality is also implemented. As has been
briefly noted earlier, all of the generating devices share a single clock. This means

49

that all participating PWM generators need to have the same base frequency. Duty
cycle can be arbitrary, but within 1-100%. Base frequency can differ from 1 Hz to
400 kHz.

The Listing 11 from Section A shows a test log from a verification run of PWM
capture functionality. In this verification test, the oscilloscope PWM signal generator
was set to 200 kHz speed. Duty cycle was initially set to 20%. During testing the
duty cycle was manually and continuously rotated to 80%. From the test log it can
be seen that the implementation is able to detect duty cycle changes of 2% while
operating at 200 kHz. The maximum deviation of frequency is 0.2%. It should be
noted, that 200 kHz is the maximum design frequency of the capture. Therefore, the
error percentages presented are worst-case errors. With lower frequencies, the errors
become even smaller than listed herein above. Figure A1 shows the oscilloscope state
at the end of the test.

5.2.6 DUT Input Power Relay

The implemented system also includes relay functionality to input power to the
DUT. This relay is controlled by the dedicated Mbed LPC1768 PCB pin p8. Relay
is implemented by using a PNP type transistor. When the control signal from
p8 is activated (in this case, with logical 0 V), 3.3 V voltage is connected to the
relay1 DUT vcc pin array. The relay device automatically adjusts the control signal
inversion. Therefore, programmatically setting the relay to 1 closes the relay and
using the value 0 opens it. Dedicated input power sourced via adjustable relay is
necessary to ensure that the DUT is powered up via the exact way wanted.

In this section, the implementation of the proposed test system was presented
and analyzed. Hardware implementation was briefly demonstrated, as was software
architecture. Important features and concepts, such as PWM generation and cap-
ture as well as the test sequencer were also introduced. PWM capture was also
benchmarked successfully in a high-frequency environment.

50

6 Challenges
During the implementation of the developed system there were many challenges, as
is sometimes the case with embedded systems projects. Some of the issues are listed
in this chapter with the discovered and proposed solutions.

6.1 Error-Prone Pin Configuration
It was discovered in the early stages of development that the complexity of pin
configurations and peripheral selections was very high. Thus, the development of
pin-related functionalities was extremely error-prone.

The solution was to develop a PHP26 script that autogenerated the necessary C
code. The generator naturally included one set of the pin configuration as presented
in the MCU datasheet. With this single-configuration approach generating the
missing C code was comfortable and less error-prone than writing everything by
hand every time a related functionality was needed. Part of the developed script is
shown in Listing 8.
function print_gpio_monitor_conf($input_pin_num, $input_pin_data_array)
{
// NEED:
// case PIN_74:
// LPC_GPIO2->FIODIR0 &= ~GPIO_74_MASK;
// LPC_GPIOINT->IO2IntEnR |= GPIO_74_INT_MASK;
// LPC_GPIOINT->IO2IntEnF |= GPIO_74_INT_MASK;
// break;

list($pincode, $pinselnum, $pinfunc_pos) = $input_pin_data_array;
list($groupnum, $pinnum) = explode(".", $pincode);
$groupnum = substr($groupnum, 1);
$subnum = floor($pinnum / 8);

if(($groupnum == 0) || ($groupnum == 2))
{

print("case PIN_" . $input_pin_num . ":\n");
print("LPC_GPIO" . $groupnum . "->FIODIR" . $subnum);
print(" &= ~GPIO_" . $input_pin_num . "_MASK;\n");
print("LPC_GPIOINT->IO" . $groupnum . "IntEnR |= GPIO_");
print($input_pin_num . "_INT_MASK;\n");
print("LPC_GPIOINT->IO" . $groupnum . "IntEnF |= GPIO_");
print($input_pin_num . "_INT_MASK;\n");
print("break;\n");

}
}

Listing 8: An excerpt from PHP script that generates C code for configuring the
MCU.

26PHP: Hypertext Preprocessor.

51

6.2 Limited Number of DAC Devices
The absence of DAC devices on the Mbed LPC1768 PCB became a problem. As can
be seen from Figure 16, only one such device was available for operations. A partial
solution was to use GPIO signals instead. This solution, of course, does not provide
smooth pseudo-linear control over the voltage, as only 0 V and 3.3 V voltages were
available. Usage of dedicated bus-controlled DAC chips would have been the optimal
solution. Another solution would have been the usage of PWM generation combined
with hardware filter implemented by a capacitor and a resistor.

6.3 Missing PWM Capture Pins
Implementing the PWM functionalities caused many problems. One elementary
problem was that there were no dedicated PWM capture pins available on the Mbed
LPC1768 PCB. As can be seen in Figure 20, the necessary pins were not routed out
of the PCB or were used for other purposes.

Figure 20: An excerpt from Mbed LPC1768 PCB schematics diagram. (Copyright:
NXP Semiconductors N.V.)

The solution to this problem was to use two normal capture pins in combination.
One of the capture pins was used to capture the up pulse cycle time of the PWM
signal using falling edge. The second capture pin was used to capture the full cycle
time of the signal using rising edge. A specific pin combiner was developed to be
used with PWM capture. It is shown in Figure 21.

52

Figure 21: Pin combiner for PWM capture.

6.4 Misbehaving Signal Generator
The misbehaving signal generator of the Keysight MSOX3054A oscilloscope was one
of the most significant challenges faced during development. It caused two separate
problems. The first problem manifested when changing the generator PWM signal
frequency. The captured signal filters started to exhibit serious errors whenever the
frequency was changed. After two weeks of developing and debugging, dedicated
embedded software was produced to issue GPIO signal when the error condition was
encountered. The oscilloscope was set to trigger to the new signal.

53

Figure 22: Oscilloscope PWM generator dropping signal upon frequency change.

Figure 22 shows the surprising behavior of the oscilloscope signal generator.
Instead of smoothly transitioning to the new frequency, it decides to drop the signal
to the ground level for 1.34 milliseconds. As a solution, the PWM filter was adjusted
to account for the behavior. The Probe Microcontroller housing signal generator
functionality was also proofed and developed into a state where the changing frequency
or duty cycle does not cause signal drops like the one experienced in this case.

54

Figure 23: Oscilloscope PWM generator settling interference at 200 kHz.

Figure 24: Oscilloscope PWM generator settling interference at 10 kHz.

Another oscilloscope signal generator problem was encountered later. It was
discovered that whenever the PWM signal generation is started, there is a period

55

of instability. This instability has the same kind of form and duration regardless of
the frequency, as can be seen by comparing Figure 23 to Figure 24. The solution for
offsetting this settling interference was to tweak the PWM capture filters again. A
delay from the encountered PWM sample change time was added first. In addition,
a methodology for handling bad values was implemented. Bad values are determined
by comparing momentary sample values to averaged sample values. Few bad values
are allowed (and discarded), but when thresholds are reached, the filters are declared
stalled and need to be repopulated from the start. The timestamp of the first
acceptable sample is stored to more accurately communicate the starting time of the
PWM signal.

6.5 Unstable PWM Sample Counter during UART Commu-
nication

The final PWM-related problem faced was encountered while debugging PWM filters.
It happened that the signal sample counters were wandering up and down relatively
slowly, causing filter stalls. One such filter stall phenomenon can be seen in Figure 25.

Figure 25: Debug printing during PWM capture at 100 kHz.

It turned out that having the UART-based debug printing activated was the cause
of these problems. Without debug printing, the 22 filter stalls observed in Figure 25
dropped to 0 stalls in Figure 26. The actual root cause of the problem remains
unknown. The possible reasons could be poor grounding or extra capacitance in pins.

56

Usage of 2 externally connected pins as single PWM capture device is also probably
more error-prone than using a single dedicated capture pin.

Figure 26: Debug printing off during PWM capture at 100 kHz.

This chapter demonstrated various challenges faced during the development of the
Probe Microcontroller. Most of the listed problems included the PWM functionality.
It turned out quite interestingly that most time-consuming problems were due to a
misbehaving oscilloscope signal generator.

57

7 Case Study: Sequential Functional Block Acti-
vation

Figure 27: Power electronics product prototype being tested on the developed Probe
Microcontroller housing.

The implemented Probe Microcontroller was used to test an actual power electronics
product prototype. The results of this test are presented in this chapter. The test
setup can be seen in Figure 27. The product prototype on the bottom right is
connected via wires to the test board. The prototype is a custom PCB with the
small microcontroller running the actual product firmware. The prototype PCB also
has the reference resistors and capacitors needed to operate the MCU, as well as
external pins to input and read signals.

58

Figure 28: Functional state machine diagram of a power electronics product.

Figure 28 shows the specified functional state machine diagram of the prototype.
This diagram has the same basic form as the diagram shown in Section 2.2.4 but in
more complicated form. The idea of testing is to verify that the inputs and outputs
according to the diagram also reflect the functionality of the actual prototype PCB
MCU. In testing, we provide inputs to the PCB MCU and monitor the outputs. The
test, in essence, verifies that the functional blocks of the power electronics prototype
are activated in precise sequential order. In case the order is wrong, the device would
not work as expected. In the worst possible case, the device could get damaged, and
sometimes even explode violently.

59

t e s t r e s e t #r e s e t the sequence
t e s t d e f i n e #s t a r t new sequence
t e s t add 0 s gpio22 monitor #inrush r e l a y s t a t e (1= di sconnected)
t e s t add 0 s gpio23 monitor #monitor PFC block s t a t e (0= a c t i v e)
t e s t add 0 s gpio24 monitor #monitor DCDC block s t a t e (0= a c t i v e)
t e s t add 0 s gpio25 monitor #monitor POWER_GOOD s i g n a l (0= a c t i v e)
t e s t add 0 s dac1 s e t 0V #zero DUT VCC vo l tage on r e s e t
t e s t add 0 s gpio16 s e t 0 #se t inve r t ed Uinrush vo l tage f o r wa i t ing
t e s t add 0 s gpio17 s e t 0 #se t UDC measurement f o r f a i l i n g
t e s t add 1 s r e l ay1 s e t 1 #connect VCC to DUT
t e s t add 5 s dac1 s e t 0 .5V #input vo l tage < s t a r t l i m i t
t e s t add 10 s dac1 s e t 0 .7V #input vo l tage > sta r t , but < f u l l ok
t e s t add 13 s end #end marker
t e s t commit #sequence ending
t e s t run #run the sequence

Listing 9: Script to test partial functionality of the prototype PCB MCU.

Listing 9 shows the first test script used to test the state machine of the prototype
device. As stated in script comments, the state of inrush relay, PFC block, DCDC
block, and POWER_GOOD signal are monitored with GPIO pins. With this specific test,
the idea is to show that when the prototype device input voltage measurement is
below a limit, the state machine does not advance. The test should also show that
when the input is raised above the limit, the state machine advances, but due to the
UDC voltage has been set to zero, the state machine should loop in states shown the
upper parts of the diagram. It should also be noted that the UInrush measurement
is inverted in the said diagram.

60

Figure 29: Test data from the Probe Microcontroller in non-finishing case, combined
with execution relative to the state machine.

Figure 29 shows the test results with relation to the state machine. It can be seen
that, in region 1 of the chart, the signals are kept initialized to the expected values,
although it should be noted that the gpio22 signal for inrush relay is first high and
then turns to low after 1 ms. This change happens even though the prototype PCB
MCU is powered down. The correct signal configuration is in effect when the system
is powered via relay1 device at around 1000 ms.

No test results are logged until approximately 5000 ms, at which point the input
voltage measurement of the prototype device is set to 500 mV via the dac1 device in
the end of region 1. The state machine does not advance due to the fact that 500 mV
is below the threshold to allow this. The next line, in region 2, sets the voltage above
the threshold to allow for an advance. After this, the code path marked with symbol
3 is executed. This results in looping behavior as was the original hypothesis. From
the microsecond-based timestamps in the results, it can be verified that, after the
correct input voltage is applied, there is a 700 ms second delay before inrush relay
disconnect. After 400 ms, there is a relay connect with another disconnect/connect
cycle. The last cycle is due to a device reset in the reset state.

Even though the execution clearly loops via the path marked with symbol 3,
there is one seemingly strange behavior. It can be observed that the state of PFC
is not changed during the loop, even though there is activation and deactivation in

61

t e s t r e s e t #r e s e t the sequence
t e s t d e f i n e #s t a r t new sequence
t e s t add 0 s gpio22 monitor #inrush r e l a y s t a t e (1= di sconnected)
t e s t add 0 s gpio23 monitor #monitor PFC block s t a t e (0= a c t i v e)
t e s t add 0 s gpio24 monitor #monitor DCDC block s t a t e (0= a c t i v e)
t e s t add 0 s gpio25 monitor #monitor POWER_GOOD s i g n a l (0= a c t i v e)
t e s t add 0 s dac1 s e t 0V #zero DUT VCC vo l tage on r e s e t
t e s t add 0 s gpio16 s e t 1 #se t inve r t ed Uinrush vo l tage f o r pas s ing
t e s t add 0 s gpio17 s e t 1 #se t UDC measurement f o r pas s ing
t e s t add 1 s r e l ay1 s e t 1 #connect VCC to DUT
t e s t add 5 s dac1 s e t 2 .7V #se t input vo l tage to f u l l ok
t e s t add 13 s end #end marker
t e s t commit #sequence ending
t e s t run #run the sequence

Listing 10: Script to test completing functionality of the prototype PCB MCU.

the code path. The observation can be explained by the slow settle time of the PFC
signal. After activating the signal in the PFC Starting state, the state machine is
advanced to the DCDC Starting state. As the UDC measurement fails at this point,
it short-circuits the execution directly to the Primary Fail state. In this state, the
PFC signal is deactivated. This deactivation happens too fast to be noticed regarding
the previous activation or the signal has no actual time to change at all. Therefore,
it seems that PFC signal was not touched and that the PFC Starting state was never
visited, even though this has not been the case.

Another test was also conducted on the state machine of the prototype device.
Listing 10 shows the second test script. The idea of the test is to make execution
reach the Primary OK state as smoothly as possible after input voltage via dac1 has
been set. A notable change to previous script other than the aforementioned device
is setting gpio16 to 1 to enable fast passing in the Inrush state. The second change
is setting gpio17 to 1 to enable passing in the DCDC Starting state.

62

Figure 30: Test data from the Probe Microcontroller in finishing case, combined with
execution relative to the state machine.

Figure 30 shows which test results were recorded, and to what part of the state
machine diagram that they correspond to. The first difference happens after the
dac1 line. Whereas in the previous test there was a 700 ms wait time, now it is
almost entirely absent. This behavior happens because the inverted UInrush voltage
is set to 1 via gpio16, signifying zero physical voltage. No wait time is needed at this
point. After the 700 ms wait, there is a 400 ms wait for the states PFC Starting
and DCDC Starting, respectively. The POWER_GOOD signal activation requires that
6.8 seconds have passed since the input voltage to the prototype device under test
was set. This voltage was set at 5000005 us. The signal activated at 11805900 us.
The difference of these numbers is 6805895 us, or roughly 6.8 s, as required in the
specification.

During the testing of the two cases above, it was discovered that the original
state machine drawing as documentation differed significantly from the actual im-
plementation. The diagram was later corrected to reflect reality. It can be said
that the developed probe for microcontroller testing was successful in catching a
documentation bug from an actual prototype power electronics product.

In this section, we discovered how a Mbed LPC1768-based Probe Microcontroller
housing system was utilized to test an actual power electronics product prototype

63

running embedded software. The test results were analyzed and their relevance
to specifications was also shown. It turned out that the prototype state machine
diagrams had actual documentation bugs, which were exposed with the developed
system.

64

8 Conclusions and Future Work
This section evaluates how the project was able to meet the design goals and
requirements stated earlier in the thesis. Notable enhancements are also presented
for the future.

8.1 Conclusions
The goals and requirements for the implemented system were set in Section 4.1. One
requirement was to “build a system that could be used to test embedded software
running on microcontrollers in power electronic applications”. This requirement
was partially met. Due to resource and timing constraints, the full system with
all of the components and their integration was not realized. However, the Probe
Microcontroller component was implemented. It was also successfully demonstrated
to be able to test real power electronics prototypes as shown in Section 7. In this
case study, it was also shown that the developed component was able to measure
and generate the necessary signals with adequate speeds, therefore fulfilling another
requirement.

As the Test Controller component was not implemented due to the aforementioned
constraints, the automatic test mode requirement was not met. However, the
implemented component can be used in manual mode, thereby partially fulfilling
a requirement. As the Test Controller was not implemented, the repository and
user interface goals were not met. The low cost of the system was achieved for the
microcontroller probe, as components for building the housing and acquiring the
Mbed PCB cost less than 100 EUR in the currency of 2017.

The best thing in the realization of the Probe Microcontroller was the fact
that it was successfully used to test an actual power electronics prototype in a time-
dependent environment27. An even more captivating discovery was that the developed
component was actually able to catch a real bug in the project documentation. To
make testing feasible, up-to-date documentation is a necessity.

8.2 Enhancements and Future Work
For future implementations of the Probe Microcontroller, many enhancements are
proposed. The most important thing is to offset the lack of multiple DACs. Having
one such peripheral available is not feasible for testing. GPIO pins to emulate
DACs is unsatisfactory, as GPIOs may feedback unwanted voltage to the tested
microcontroller. The resolution is the use of external DAC chips, which are controlled
via I2C or SPI protocols. The abstraction of the existing DAC devices should be
kept, but there is one important addition. A voltage slope functionality should be
implemented. A slow ramp-up time of voltages can expose hidden problems in power
electronics products running embedded software and can also be used to emulate the
constantly changing temperature in the product.

27Time-dependency is a distinctive aspect of the power electronics context.

65

Slope functionality should also be implemented for the input power of the device
under test (DUT). It should also be made possible to dip the DUT input voltage below
0 V, as temporary brownouts and under-voltages can cause unexpected behavior in
microcontrollers. Sometimes this behavior is even unknown to the vendors and can
cause extensive delays in debugging and development. The current transistor-based
input voltage relay control needs to be superseded with a linear voltage dip-capable
design. Implementing all of the necessary hardware changes means that there needs to
be an actual custom circuit board designed for housing all of the related components
and pathways.

A few completely software-based functionalities could also be implemented, for
example the monitor functionality of the DAC device to read momentary voltages.
In addition, as interconnected microcontrollers in power electronics sometimes need
mutual communication, the bus functionalities of the implemented system should be
significantly extended. New hardware buses, such as SPI or I2C, should be made
available and operable with send and monitor functionalities. Generic or product
family based protocols could also be implemented on top of the hardware buses.

Regarding PWM capture, the implementation currently captures only duty cycle
and frequency. As a sine-form PWM signal can be used in power electronics as a
regulation control signal, the generation and capture should also support sine-forms in
the Probe Microcontroller. Another capture option is the monitoring of the minimum
and maximum duty cycle and frequency values.

The implemented solution in this thesis operates on 3.3 V logic level. Therefore,
it may be incompatible with other logic levels, such as 5 V or 2.5 V. Level shifters
may be an adequate way to resolve the problem. It should be investigated though,
if this solution is acceptable regarding the rise and fall times of signals, especially
in high-speed bus communication. More research should also be conducted about
usage of entirely interrupts-driven test sequencer.

This thesis demonstrated that it is possible to build a test system for microcontrollers
using relatively cheap off-the-shelf parts. The test system was also verified as being
able to test the validity of both implementation and documentation of a power
electronics prototype.

66

References
[1] Ball, T. The concept of dynamic analysis. In ACM SIGSOFT Software

Engineering Notes (1999), vol. 24, Springer-Verlag, pp. 216–234.

[2] Boehm, B., and Basili, V. R. Software defect reduction top 10 list.
Foundations of empirical software engineering: the legacy of Victor R. Basili
426 (2005), 37.

[3] Boehm, B. W. Software risk management: principles and practices. IEEE
software 8, 1 (1991), 32–41.

[4] Bose, B. K. Modern power electronics. IEEE, 1992.

[5] Bouscayrol, A. Different types of hardware-in-the-loop simulation for
electric drives. In Industrial Electronics, 2008. ISIE 2008. IEEE International
Symposium on (2008), IEEE, pp. 2146–2151.

[6] Broekman, B., and Notenboom, E. Testing embedded software. Pearson
Education, 2003.

[7] Burnstein, I., Suwanassart, T., and Carlson, R. Developing a testing
maturity model for software test process evaluation and improvement. In Test
Conference, 1996. Proceedings., International (1996), IEEE, pp. 581–589.

[8] Erickson, R. W., and Maksimovic, D. Fundamentals of Power Electronics.
Springer Science & Business Media, 2001.

[9] Information technology equipment - Safety - Part 1: General requirements.
Standard, International Electrotechnical Commission, 2005.

[10] Isermann, R., Schaffnit, J., and Sinsel, S. Hardware-in-the-loop simula-
tion for the design and testing of engine-control systems. Control Engineering
Practice 7, 5 (1999), 643–653.

[11] Jones, C. Software quality metrics: Three harmful metrics and two helpful
metrics, 2012.

[12] Karlesky, M. J., Bereza, W. I., and Erickson, C. B. Effective test
driven development for embedded software. In Electro/information Technology,
2006 IEEE International Conference on (2006), IEEE, pp. 382–387.

[13] Khan, M. E., Khan, F., et al. A comparative study of white box, black box
and grey box testing techniques. International Journal of Advanced Computer
Sciences and Applications 3, 6 (2012), 12–1.

[14] Kuusijärvi, T. An FPGA implementation of a power converter controller.
Master’s thesis, Aalto University School of Electrical Engineering, 2017.

[15] Lee, E. A. Embedded software. Advances in computers 56 (2002), 55–95.

67

[16] Lee, E. A., and Seshia, S. A. Introduction to embedded systems: A
cyber-physical systems approach. Lee & Seshia, 2015.

[17] Leung, H. K., and White, L. Insights into regression testing (software
testing). In Software Maintenance, 1989., Proceedings., Conference on (1989),
IEEE, pp. 60–69.

[18] Lewis, J. P. Project Manager’s Desk Reference. Probus Pub. Co., 1993.

[19] Mohan, N., Undeland, T. M. R., William, P., Tore, M. U., William,
P. R., Heumann, K., Möltgen, G., Moeller, F., and Werr, T. Power
electronics: converters, applications, and design. Tech. rep., John Wiley &
Sons, 2003.

[20] Motor Industry Software Reliability Association. Misra c
: 2012. https://www.misra.org.uk/MISRAHome/MISRAC2012/tabid/196/
Default.aspx, 2012. [Online; accessed 2017-09-13].

[21] Oehlert, P. Violating assumptions with fuzzing. IEEE Security & Privacy 3,
2 (2005), 58–62.

[22] Oshana, R. DSP software development techniques for embedded and real-time
systems. Newnes, 2006.

[23] Paalijärvi, J. mbed-lpc1768-ledtimer. https://github.com/usvi/
mbed-LPC1768-ledtimer, 2017. [Online; accessed 2017-10-22].

[24] Paalijärvi, J. Simple mbed lpc1768 led timer demo. https://www.youtube.
com/watch?v=JxRWRIWEx48, 2017. [Online; accessed 2017-10-22].

[25] Rich, N., and Taylor, R. Linear versus switching regulators in industrial
applications with a 24-v bus. National Semiconductor Corporation, Santa Clara,
CA, USA (1995).

[26] Sen, K., Marinov, D., and Agha, G. Cute: a concolic unit testing engine
for c. In ACM SIGSOFT Software Engineering Notes (2005), vol. 30, ACM,
pp. 263–272.

[27] Stolberg, S. Enabling agile testing through continuous integration. In Agile
Conference, 2009. AGILE’09. (2009), IEEE, pp. 369–374.

[28] Stollon, N. On-chip instrumentation: design and debug for systems on chip.
Springer Science & Business Media, 2011.

[29] Stroustrup, B. Abstraction and the c++ machine model. In International
Conference on Embedded Software and Systems (2004), Springer, pp. 1–13.

[30] van Vliet, H. Software engineering: Principles and practice.

https://www.misra.org.uk/MISRAHome/MISRAC2012/tabid/196/Default.aspx
https://www.misra.org.uk/MISRAHome/MISRAC2012/tabid/196/Default.aspx
https://github.com/usvi/mbed-LPC1768-ledtimer
https://github.com/usvi/mbed-LPC1768-ledtimer
https://www.youtube.com/watch?v=JxRWRIWEx48
https://www.youtube.com/watch?v=JxRWRIWEx48

68

[31] Vector Software Inc. c and c++ unit testing tool | vectorcast | vector soft-
ware_2017. https://www.vectorcast.com/software-testing-products/
c-unit-testing, 2017. [Online; accessed 2017-09-13].

[32] White, R. V. Introduction to the pmbus. System Management Interface
Forum (2005).

[33] Wikipedia. Digital signal processor — Wikipedia, the free encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=Digital_signal_
processor&oldid=745931807#Instruction_sets, 2016. [Online; accessed
2016-11-14].

[34] Wikipedia. Lint (software) — Wikipedia, the free encyclope-
dia. https://en.wikipedia.org/w/index.php?title=Lint_%28software%
29&oldid=798994900, 2017. [Online; accessed 2017-09-13].

[35] Wolf, W. H. Hardware-software co-design of embedded systems [and prolog].
Proceedings of the IEEE 82, 7 (1994), 967–989.

[36] Zhivich, M., and Cunningham, R. K. The real cost of software errors.
IEEE Security & Privacy 7, 2 (2009).

https://www.vectorcast.com/software-testing-products/c-unit-testing
https://www.vectorcast.com/software-testing-products/c-unit-testing
https://en.wikipedia.org/w/index.php?title=Digital_signal_processor&oldid=745931807#Instruction_sets
https://en.wikipedia.org/w/index.php?title=Digital_signal_processor&oldid=745931807#Instruction_sets
https://en.wikipedia.org/w/index.php?title=Lint_%28software%29&oldid=798994900
https://en.wikipedia.org/w/index.php?title=Lint_%28software%29&oldid=798994900

69

A PWM Capture of a 200 kHz Signal

Figure A1: Oscilloscope PWM signal generator at 200 kHz after having cycled the
duty cycle from 20 % to 80 %.

ok
t e s t complete
r e s u l t s get
400013 pwm2.0 monitor 20% 200000Hz
2131261 pwm2.0 monitor 21% 200000Hz
2253288 pwm2.0 monitor 22% 200000Hz
2306845 pwm2.0 monitor 23% 199584Hz
2357435 pwm2.0 monitor 25% 200000Hz
2420022 pwm2.0 monitor 26% 200000Hz
2601937 pwm2.0 monitor 27% 200000Hz
2662173 pwm2.0 monitor 28% 200000Hz
2720818 pwm2.0 monitor 30% 200000Hz
2804492 pwm2.0 monitor 31% 200000Hz
2859565 pwm2.0 monitor 33% 199584Hz
2923412 pwm2.0 monitor 34% 200000Hz
2948104 pwm2.0 monitor 36% 199584Hz
2966143 pwm2.0 monitor 37% 200000Hz
3491534 pwm2.0 monitor 39% 199584Hz
3606333 pwm2.0 monitor 40% 200000Hz
3647627 pwm2.0 monitor 41% 200000Hz

70

3698087 pwm2.0 monitor 43% 200000Hz
3759150 pwm2.0 monitor 44% 200000Hz
3822337 pwm2.0 monitor 45% 200000Hz
3906407 pwm2.0 monitor 46% 200000Hz
3941075 pwm2.0 monitor 48% 200000Hz
3980760 pwm2.0 monitor 49% 200000Hz
4043639 pwm2.0 monitor 50% 200000Hz
4172005 pwm2.0 monitor 51% 200000Hz
4574371 pwm2.0 monitor 53% 199584Hz
4627608 pwm2.0 monitor 54% 199584Hz
4689781 pwm2.0 monitor 55% 200000Hz
4710675 pwm2.0 monitor 57% 200000Hz
4735286 pwm2.0 monitor 58% 200000Hz
4812761 pwm2.0 monitor 59% 200000Hz
4846390 pwm2.0 monitor 60% 199584Hz
4897360 pwm2.0 monitor 62% 200000Hz
4976422 pwm2.0 monitor 63% 200000Hz
5008740 pwm2.0 monitor 64% 200000Hz
5045590 pwm2.0 monitor 66% 200000Hz
5073543 pwm2.0 monitor 67% 200000Hz
5491913 pwm2.0 monitor 68% 200000Hz
5522636 pwm2.0 monitor 70% 200417Hz
5552346 pwm2.0 monitor 71% 200000Hz
5606024 pwm2.0 monitor 72% 200000Hz
5628413 pwm2.0 monitor 73% 200000Hz
5650610 pwm2.0 monitor 75% 200000Hz
5671120 pwm2.0 monitor 76% 200000Hz
5720515 pwm2.0 monitor 77% 200000Hz
5756668 pwm2.0 monitor 78% 200000Hz
5793115 pwm2.0 monitor 80% 200417Hz
10000010 end
ok
Listing 11: Test log from 200 kHz PWM signal capture when alternating the duty
cycle from 20 % to 80 %.

	Abstract
	Abstract (in Finnish)
	Preface
	Contents
	Abbreviations and Acronyms
	Units
	1 Introduction
	1.1 Objective of the Thesis
	1.2 Overview of the Thesis

	2 Power Electronics and Embedded Software
	2.1 Power Electronics
	2.1.1 Control and Regulation
	2.1.2 Efficiency
	2.1.3 Linear versus Switching Mode
	2.1.4 Power Electronics Device Types

	2.2 Embedded Software
	2.2.1 Microcontrollers
	2.2.2 DSPs and FPGAs
	2.2.3 Development Tools
	2.2.4 Programming Embedded Software

	2.3 Embedded Software in Power Electronics
	2.3.1 Benefits
	2.3.2 Future

	3 Embedded Software Testing
	3.1 Benefits of Testing in Industrial Power Electronics
	3.2 What to Consider when Testing in the Power Electronics Context
	3.3 Testing and Verification Methods
	3.3.1 Checklists
	3.3.2 Code Reviews
	3.3.3 Test-driven Development
	3.3.4 Simulation
	3.3.5 Unit Testing
	3.3.6 Regression Testing
	3.3.7 Static Code Analysis
	3.3.8 Dynamic Code Analysis
	3.3.9 Hardware-in-the-Loop
	3.3.10 Black Box Testing
	3.3.11 White Box Testing
	3.3.12 Fuzzing
	3.3.13 Continuous Integration

	4 Our Approach
	4.1 Requirements
	4.2 High Level Architecture
	4.3 Individual Components
	4.3.1 Test Controller
	4.3.2 Firmware Flasher
	4.3.3 Probe Microcontroller
	4.3.4 Continuous Integration Service

	5 Implementation
	5.1 Hardware Implementation
	5.2 Software Implementation
	5.2.1 Overview of Design Decisions and High-Level Architecture
	5.2.2 UART-Based Communication Protocol
	5.2.3 Device List
	5.2.4 Test Commands and Test Sequencer
	5.2.5 PWM Signal Capture and Generation
	5.2.6 DUT Input Power Relay

	6 Challenges
	6.1 Error-Prone Pin Configuration
	6.2 Limited Number of DAC Devices
	6.3 Missing PWM Capture Pins
	6.4 Misbehaving Signal Generator
	6.5 Unstable PWM Sample Counter during UART Communication

	7 Case Study: Sequential Functional Block Activation
	8 Conclusions and Future Work
	8.1 Conclusions
	8.2 Enhancements and Future Work

	References
	A PWM Capture of a 200 kHz Signal

